Skip to main content
Log in

Removal of Methylene Blue Dye from Aqueous Solutions Using Carboxymethyl-β-Cyclodextrin-Fe3O4 Nanocomposite: Thermodynamics and Kinetics of Adsorption Process

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The applicability of the synthesized carboxymethyl-β-cyclodextrin-Fe3O4 nanocomposite (CM‑β-CD-Fe3O4NPs) as a novel adsorbent for eliminating Methylene blue dye (MB) from aqueous media was investigated. Various techniques including Brunauer Emmett Teller analysis (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been used to characterize this novel adsorbent. The effect of initial concentration (C0), pH, adsorbent dosage (dose), contact time (tc), and temperature (T, K) on the removal percentage (Ad%) of MB dye onto CM-β-CD-Fe3O4NPs was studied, and the optimum value of each factor was determined (pH 6.0, dose = 0.20 g, tc = 45.0 min, and T = 298.0 K). Several isotherm models, such as Langmuir, Freundlich and Redlich–Peterson models were used to represent the adsorption experimental results, but the Freundlich model represents better the results than others. The pseudo-second-order kinetics coincided quite with the kinetic results. Based on the obtained thermodynamic values such as standard Gibbs free energy change (\(\Delta G_{{{\text{ad}}}}^{^\circ }\) < 0), standard enthalpy change (\(\Delta H_{{{\text{ad}}}}^{^\circ }\) < 0) and standard entropy change (\(\Delta S_{{{\text{ad}}}}^{^\circ }\) < 0), the nature of the adsorption process was spontaneous, exothermic and mainly physisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. V. Rocher, J. M. Siaugue, V. Cabuil, and A. Bee, J. Water Res. 42, 1290 (2008).

    Article  CAS  Google Scholar 

  2. S. Hajati, M. Ghaedi, and H. Mazaheri, Desalin. Water Treat. 57, 3179 (2016).

    Article  CAS  Google Scholar 

  3. R. Tang, C. Dai, C. Li, W. Liu, S. Gao, and C. Wang, J. Chem. 10, 1155 (2017).

    Google Scholar 

  4. P. Ken Gillman, Psychosomatics 51, 448 (2010).

    Article  PubMed  Google Scholar 

  5. R. Alizadeh and A. Zeidi, Adv. Environ. Res. 6, 113 (2017).

    Google Scholar 

  6. M. Ghaedi, Sh. Hajati, B. Barazesh, F. Karimi, and Gh. Ghezelbash, J. Ind. Eng. Chem. 19, 227 (2013).

    Article  CAS  Google Scholar 

  7. S. M. Lee and S. T. Ong, APCBEE Proc. 9, 165 (2014).

  8. D. Bahadur, D. Dutta, and D. Thakur, Chem. Eng. J. 281, 482 (2015).

    Article  Google Scholar 

  9. K. G. Pavithra, P. S. Kumar, V. Jaikumar, and P. S. Rajan, J. Ind. Eng. Chem. 75, 1 (2019).

    Article  CAS  Google Scholar 

  10. Y. Kuang, X. Zhang, and S. Zhou, J. Water. Res. 12, 587 (2020).

    Google Scholar 

  11. D. D. Asouhidou, Colloids Surf. A 346, 83 (2009).

    Article  CAS  Google Scholar 

  12. C. Shan, Z. Ma, M. Tong, and J. Ni, Water Res. 69, 252 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. S. Palchoudhury and J. R. Lead, Environ. Sci. Technol. 48, 14558 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. A. Abdilmaleki, S. Mallekpour, and S. Borandeh, RSC Adv. 110, 1063 (2015).

  15. F. Zhao, E. Repo, D. Yin, S. Kalliola, J. Tang, E. Yakovleva, K. C. Tam, and M. Sillanp, Sci. Rep. 10, 1038 (2017).

    Google Scholar 

  16. A. Asfaram and M. Ghaedi, RSC Adv. 6, 40502 (2016).

  17. S. Hajati, M. Ghaedi, B. Barazesh, F. Karimi, R. Sahraei, A. Daneshfar, and A. Asghari, J. Ind. Eng. Chem. 20, 2421 (2014).

    Article  CAS  Google Scholar 

  18. K. Kiani, S. Bagheri, and N. Karachi, and E. Alipanahpour Dil, Desalin. Water Treatm. 60, 1 (2019).

    Google Scholar 

  19. K. Boonyarattanakalin, P. Wolschann, P. Toochinda, and L. Lawtrakul, Eur. J. Pharm. Sci. 47, 752 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. U. R. Bhaskara-Amrit, P. Agrawa, and M. Warmoeskerken, Autexj. 11, 94 (2011).

    Google Scholar 

  21. A. S. S. Ibrahim, A. A. Al-Salamah, A. M. El-Toni, M. A. El-Tayeb, and Y. B. Elbadawi, Biol. Electron. J. Biol. 16, 10 (2013).

    Google Scholar 

  22. H. S. Ghazimokri, M. Monajjemi, and H. Aghaie, Rev. Uni. Zulia. 29, 98 (2020).

    Google Scholar 

  23. J. Zhu, P. Wang, and M. Lu, M. J. Braz. Chem. Soc. 24, 2317 (2013).

    Google Scholar 

  24. T. K. Sen, S. Afroze, and H. M. Ang, Equilib., Water Air Poll. 218, 499 (2011).

    Article  CAS  Google Scholar 

  25. M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, J. Hazard. Mater. 177, 70 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. E. Furusaki, Y. Ueno, N. Sakairi, N. Nishi, and S. Tokura, Carbohydr. Polym. 29, 29 (1996).

    Article  CAS  Google Scholar 

  27. A. Z. M. Badruddoza, S. S. H. Goh, K. Hidajat, and M. S. Uddin, Colloids Surf., A 367, 85 (2010).

    Article  CAS  Google Scholar 

  28. M. R. R. Kooh, M. K. Dahri, L. B. L. Lim, L. H. Lim, and O. A. Malik, Environ Earth Sci. 75, 783 (2016).

    Article  Google Scholar 

  29. M. Auta and B. H. Hameed, J. Chem. Eng. 237, 350 (2014).

    Article  Google Scholar 

  30. W. P. Utomo, E. Santoso, G. Yuhaneka, A. I. Triantini, M. R. Fatqi, M. F. Hudadan, and N. Nurfitria, J. Chem. 13, 104 (2019).

    Google Scholar 

  31. H. S. Ghazi Mokri, N. Modirshahla, M. A. Behnajady, and B. Vahid, Int. J. Environ. Sci. Technol. 12, 1401 (2015).

    Article  CAS  Google Scholar 

  32. G. Mamba, X. Y. Mbianda, P. P. Govender, B. B. Mamba, and R. W. Krause, J. Appl. Sci. 10, 940 (2010).

    Article  CAS  Google Scholar 

  33. S. Kaur and A. Gaur, Adv. Sci. 20, 1707 (2014).

    Google Scholar 

  34. B. R. Saifutdinov, V. A. Davankov, and M. M. Il’in, Russ. J. Phys. Chem. A 88, 358 (2014).

    Article  CAS  Google Scholar 

  35. B. R. Saifutdinov, V. A. Davankov, G. A. Petukhova, M. P. Tsyurupa, Z. K. Blinnikova, and M. M. Il’in, Dokl. Phys. Chem. 462, 135 (2015).

    Article  CAS  Google Scholar 

  36. W. Wei, L. Yang, W. H. Zhong, S. Y. Li, J. Cui, and Z. G. Wei, Dig. J. Nanomater. Bios. 10, 1343 (2015).

    Google Scholar 

  37. R. Mahini, H. Esmaeili, and R. Foroutan, Turk. J. Biochem. 24, 1(2018).

    Google Scholar 

  38. D. Pathania, S. Sharma, and P. Singh, Arab. J. Chem. 10, 1445 (2017).

    Article  Google Scholar 

  39. S. Bagheri, H. Aghaei, M. Ghaedi, A. Asfaram, M. Monajemi, and A. A. Bazrafshan, Ultrason Sonochem. 41, 279 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. S. Bagheri, H. Aghaei, M. Ghaedi, M. Monajjemi, and K. Zare, Euras. J. Anal. Chem. 13, 1 (2018).

    Google Scholar 

  41. G. H. Haghdoost, J. Phys. Theor. Chem. 15, 141 (2019).

    Google Scholar 

  42. M. Ghaedi, S. Heidarpour, S. Nasiri, S. Kokhdan, A. Daneshfar, and B. Brazesh, Powder Technol. 228, 18 (2012).

    Article  CAS  Google Scholar 

  43. M. Toor and B. Jin, J. Chem. Eng. 187, 79 (2012).

    Article  CAS  Google Scholar 

  44. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, and A. Asghari, Ultrason. Sonochem. 21, 242 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, and Q. Xu, Chem. Eng. J. 259, 53 (2015).

    Article  CAS  Google Scholar 

  46. M. T. Yagub, T. K. Sen, and H. M. Ang, Water Air Soil Pollut. 223, 5267 (2012).

    Article  CAS  Google Scholar 

  47. S. Bagheri, Orient. J. Chem. 32, 549 (2016).

    Article  CAS  Google Scholar 

  48. A. A. Sabri, T. M. Albayati, and R. A. Alazawi, Korean J. Chem. Eng. 32, 1835 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge Science and Research Branch of Islamic Azad University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hediyeh Sadat Ghazimokri or Hossein Aghaie.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazimokri, H., Aghaie, H., Monajjemi, M. et al. Removal of Methylene Blue Dye from Aqueous Solutions Using Carboxymethyl-β-Cyclodextrin-Fe3O4 Nanocomposite: Thermodynamics and Kinetics of Adsorption Process. Russ. J. Phys. Chem. 96, 371–380 (2022). https://doi.org/10.1134/S0036024422020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422020108

Keywords:

Navigation